The relationship between optimal and biologically plausible decoding of stimulus velocity in the retina.
نویسندگان
چکیده
A major open problem in systems neuroscience is to understand the relationship between behavior and the detailed spiking properties of neural populations. We assess how faithfully velocity information can be decoded from a population of spiking model retinal neurons whose spatiotemporal receptive fields and ensemble spike train dynamics are closely matched to real data. We describe how to compute the optimal Bayesian estimate of image velocity given the population spike train response and show that, in the case of global translation of an image with known intensity profile, on average the spike train ensemble signals speed with a fractional standard deviation of about 2% across a specific set of stimulus conditions. We further show how to compute the Bayesian velocity estimate in the case where we only have some a priori information about the (naturalistic) spatial correlation structure of the image but do not know the image explicitly. As expected, the performance of the Bayesian decoder is shown to be less accurate with decreasing prior image information. There turns out to be a close mathematical connection between a biologically plausible "motion energy" method for decoding the velocity and the Bayesian decoder in the case that the image is not known. Simulations using the motion energy method and the Bayesian decoder with unknown image reveal that they result in fractional standard deviations of 10% and 6%, respectively, across the same set of stimulus conditions. Estimation performance is rather insensitive to the details of the precise receptive field location, correlated activity between cells, and spike timing.
منابع مشابه
Optimal decoding of stimulus velocity using a probabilistic model of ganglion cell populations in primate retina
A major open problem in systems neuroscience is to understand the relationship between behavior and the detailed spiking properties of neural populations. In this work, we assess how faithfully velocity information can be decoded from a population of spiking model retinal neurons whose spatiotemporal receptive fields and ensemble spike-train dynamics are closely matched to real data. We describ...
متن کاملComputing with Continuous Attractors: Stability and Online Aspects
Two issues concerning the application of continuous attractors in neural systems are investigated: the computational robustness of continuous attractors with respect to input noises and the implementation of Bayesian online decoding. In a perfect mathematical model for continuous attractors, decoding results for stimuli are highly sensitive to input noises, and this sensitivity is the inevitabl...
متن کاملChapter 3 Neural Decoding
In chapters 1 and 2, we considered the problem of predicting neural responses to known stimuli. The nervous system faces the reverse problem, determining what is going on in the real world from neuronal spiking patterns. It is interesting to attempt such computations ourselves, using the responses of one or more neurons to identify a particular stimulus or to extract the value of a stimulus par...
متن کاملNeural Implementation of Bayesian Inference in Population Codes
This study investigates a population decoding paradigm, in which the estimation of stimulus in the previous step is used as prior knowledge for consecutive decoding. We analyze the decoding accuracy of such a Bayesian decoder (Maximum a Posteriori Estimate), and show that it can be implemented by a biologically plausible recurrent network, where the prior knowledge of stimulus is conveyed by th...
متن کاملNeural Quadratic Discriminant Analysis: Nonlinear Decoding with V1-Like Computation
Linear-nonlinear (LN) models and their extensions have proven successful in describing transformations from stimuli to spiking responses of neurons in early stages of sensory hierarchies. Neural responses at later stages are highly nonlinear and have generally been better characterized in terms of their decoding performance on prespecified tasks. Here we develop a biologically plausible decodin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 26 11 شماره
صفحات -
تاریخ انتشار 2009